3.260 \(\int \frac{x^5 \sqrt{c+d x^3}}{4 c+d x^3} \, dx\)

Optimal. Leaf size=76 \[ \frac{8 c^{3/2} \tan ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{3} \sqrt{c}}\right )}{\sqrt{3} d^2}-\frac{8 c \sqrt{c+d x^3}}{3 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 d^2} \]

[Out]

(-8*c*Sqrt[c + d*x^3])/(3*d^2) + (2*(c + d*x^3)^(3/2))/(9*d^2) + (8*c^(3/2)*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sq
rt[c])])/(Sqrt[3]*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0623822, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {446, 80, 50, 63, 203} \[ \frac{8 c^{3/2} \tan ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{3} \sqrt{c}}\right )}{\sqrt{3} d^2}-\frac{8 c \sqrt{c+d x^3}}{3 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 d^2} \]

Antiderivative was successfully verified.

[In]

Int[(x^5*Sqrt[c + d*x^3])/(4*c + d*x^3),x]

[Out]

(-8*c*Sqrt[c + d*x^3])/(3*d^2) + (2*(c + d*x^3)^(3/2))/(9*d^2) + (8*c^(3/2)*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sq
rt[c])])/(Sqrt[3]*d^2)

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^5 \sqrt{c+d x^3}}{4 c+d x^3} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x \sqrt{c+d x}}{4 c+d x} \, dx,x,x^3\right )\\ &=\frac{2 \left (c+d x^3\right )^{3/2}}{9 d^2}-\frac{(4 c) \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{4 c+d x} \, dx,x,x^3\right )}{3 d}\\ &=-\frac{8 c \sqrt{c+d x^3}}{3 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 d^2}+\frac{\left (4 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c+d x} (4 c+d x)} \, dx,x,x^3\right )}{d}\\ &=-\frac{8 c \sqrt{c+d x^3}}{3 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 d^2}+\frac{\left (8 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{3 c+x^2} \, dx,x,\sqrt{c+d x^3}\right )}{d^2}\\ &=-\frac{8 c \sqrt{c+d x^3}}{3 d^2}+\frac{2 \left (c+d x^3\right )^{3/2}}{9 d^2}+\frac{8 c^{3/2} \tan ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{3} \sqrt{c}}\right )}{\sqrt{3} d^2}\\ \end{align*}

Mathematica [A]  time = 0.0283623, size = 65, normalized size = 0.86 \[ \frac{24 \sqrt{3} c^{3/2} \tan ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{3} \sqrt{c}}\right )+2 \left (d x^3-11 c\right ) \sqrt{c+d x^3}}{9 d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^5*Sqrt[c + d*x^3])/(4*c + d*x^3),x]

[Out]

(2*(-11*c + d*x^3)*Sqrt[c + d*x^3] + 24*Sqrt[3]*c^(3/2)*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])])/(9*d^2)

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 446, normalized size = 5.9 \begin{align*}{\frac{2}{9\,{d}^{2}} \left ( d{x}^{3}+c \right ) ^{{\frac{3}{2}}}}-4\,{\frac{c}{d} \left ( 2/3\,{\frac{\sqrt{d{x}^{3}+c}}{d}}+{\frac{i/3\sqrt{2}}{{d}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d+4\,c \right ) }{\frac{\sqrt [3]{-{d}^{2}c} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i \left ( -{d}^{2}c \right ) ^{2/3}\sqrt{3}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{2/3} \right ) }{\sqrt{d{x}^{3}+c}}\sqrt{{\frac{i/2d}{\sqrt [3]{-{d}^{2}c}} \left ( 2\,x+{\frac{-i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c}}{d}} \right ) }}\sqrt{{\frac{d}{-3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c}} \left ( x-{\frac{\sqrt [3]{-{d}^{2}c}}{d}} \right ) }}\sqrt{{\frac{-i/2d}{\sqrt [3]{-{d}^{2}c}} \left ( 2\,x+{\frac{i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c}}{d}} \right ) }}{\it EllipticPi} \left ( 1/3\,\sqrt{3}\sqrt{{\frac{i\sqrt{3}d}{\sqrt [3]{-{d}^{2}c}} \left ( x+1/2\,{\frac{\sqrt [3]{-{d}^{2}c}}{d}}-{\frac{i/2\sqrt{3}\sqrt [3]{-{d}^{2}c}}{d}} \right ) }},1/6\,{\frac{2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{2/3}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd}{cd}},\sqrt{{\frac{i\sqrt{3}\sqrt [3]{-{d}^{2}c}}{d} \left ( -3/2\,{\frac{\sqrt [3]{-{d}^{2}c}}{d}}+{\frac{i/2\sqrt{3}\sqrt [3]{-{d}^{2}c}}{d}} \right ) ^{-1}}} \right ) }} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(d*x^3+c)^(1/2)/(d*x^3+4*c),x)

[Out]

2/9*(d*x^3+c)^(3/2)/d^2-4/d*c*(2/3*(d*x^3+c)^(1/2)/d+1/3*I/d^3*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-
I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I
*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^
(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3
)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3
^(1/2)*d/(-d^2*c)^(1/3))^(1/2),1/6/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*
3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/
d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d+4*c)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(d*x^3+c)^(1/2)/(d*x^3+4*c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.09525, size = 332, normalized size = 4.37 \begin{align*} \left [\frac{2 \,{\left (6 \, \sqrt{3} \sqrt{-c} c \log \left (\frac{d x^{3} + 2 \, \sqrt{3} \sqrt{d x^{3} + c} \sqrt{-c} - 2 \, c}{d x^{3} + 4 \, c}\right ) + \sqrt{d x^{3} + c}{\left (d x^{3} - 11 \, c\right )}\right )}}{9 \, d^{2}}, \frac{2 \,{\left (12 \, \sqrt{3} c^{\frac{3}{2}} \arctan \left (\frac{\sqrt{3} \sqrt{d x^{3} + c}}{3 \, \sqrt{c}}\right ) + \sqrt{d x^{3} + c}{\left (d x^{3} - 11 \, c\right )}\right )}}{9 \, d^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(d*x^3+c)^(1/2)/(d*x^3+4*c),x, algorithm="fricas")

[Out]

[2/9*(6*sqrt(3)*sqrt(-c)*c*log((d*x^3 + 2*sqrt(3)*sqrt(d*x^3 + c)*sqrt(-c) - 2*c)/(d*x^3 + 4*c)) + sqrt(d*x^3
+ c)*(d*x^3 - 11*c))/d^2, 2/9*(12*sqrt(3)*c^(3/2)*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c)) + sqrt(d*x^3 + c
)*(d*x^3 - 11*c))/d^2]

________________________________________________________________________________________

Sympy [A]  time = 19.2291, size = 68, normalized size = 0.89 \begin{align*} \frac{2 \left (\frac{4 \sqrt{3} c^{\frac{3}{2}} \operatorname{atan}{\left (\frac{\sqrt{3} \sqrt{c + d x^{3}}}{3 \sqrt{c}} \right )}}{3} - \frac{4 c \sqrt{c + d x^{3}}}{3} + \frac{\left (c + d x^{3}\right )^{\frac{3}{2}}}{9}\right )}{d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(d*x**3+c)**(1/2)/(d*x**3+4*c),x)

[Out]

2*(4*sqrt(3)*c**(3/2)*atan(sqrt(3)*sqrt(c + d*x**3)/(3*sqrt(c)))/3 - 4*c*sqrt(c + d*x**3)/3 + (c + d*x**3)**(3
/2)/9)/d**2

________________________________________________________________________________________

Giac [A]  time = 1.13672, size = 92, normalized size = 1.21 \begin{align*} \frac{2 \,{\left (\frac{12 \, \sqrt{3} c^{\frac{3}{2}} \arctan \left (\frac{\sqrt{3} \sqrt{d x^{3} + c}}{3 \, \sqrt{c}}\right )}{d} + \frac{{\left (d x^{3} + c\right )}^{\frac{3}{2}} d^{2} - 12 \, \sqrt{d x^{3} + c} c d^{2}}{d^{3}}\right )}}{9 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(d*x^3+c)^(1/2)/(d*x^3+4*c),x, algorithm="giac")

[Out]

2/9*(12*sqrt(3)*c^(3/2)*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c))/d + ((d*x^3 + c)^(3/2)*d^2 - 12*sqrt(d*x^3
 + c)*c*d^2)/d^3)/d